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Several aspects of localized defects in the Frenkel-Kontorova, classical XY 
chain and analogous models with a finite range of interactions are discussed 
from a general point of view. Precise definitions are given for defect phase shifts 
(charges) and for creation, pinning, and interaction energies. Corresponding 
definitions are also provided for interfaces (localized regions separating two 
phases). For the nearest-neighbor Frenkel-Kontorova model, the various defect 
energies are related to areas enclosed by contours joining heteroclinic points of 
the area-preserving map generated by the conditions of mechanical equilibrium. 
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1. I N T R O D U C T I O N  

This paper  is a study of some properties of localized defect configurat ions 
in classical one-d imens ional  models of the sort used to describe incom- 
mensura te  and  modula ted  phasesJ 1'2) Examples include the F r e n k e l -  
K o n t o r o v a  (3) model  with energy 

qs = ~ [ V (u , )  + �89 + x - Un) 2] (1.1) 
n 

where u ,  is a real variable giving the posi t ion of the n th a tom in a l inear 
chain and  V(u) is a periodic potential ;  and  the chiral classical X Y  model  in 
a magnet ic  field, (4) 

q,=y~ [--H cos ~.-cos(0.+ 1-  ~ . -  ~)3 (1.2) 
n 
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where ~b n is an angle associated with the n th "spin." The ground states of 
these and other analogous models can exhibit a periodicity or 
quasiperiodicity which varies in a complicated way as a function of the 
parameters (such as H and A) which enter the energy, showing some 
resemblance (or at least analogy) with a variety of physical systems, 
including some alloys, (5) ferroelectrics, (6) rare-earth magnets, (7) and the 
like, in which there is a one-dimensional modulation superimposed on a 
regular crystal structure. If the modulation period is a rational multiple of 
the distance between crystalline planes, one calls it "commensurate"; 
otherwise, it is "incommensurate." It seems likely that both of these can 
occur in real physical systems, and it is known that both can be exhibited 
(under suitable conditions) by ground states of (1.1) and (1.2). (2,4) Among 
the elementary excitations of these systems there are localized static 
defects(,.2,4.8 15) (called various names, such as kinks, solitons, discommen- 
surations, domain walls), which play an important role in the phase trans- 
itions which occur when the periodicity of the modulation changes and in 
various transport and other (e.g., electronic) properties of the system. In 
addition, it is helpful to think of certain incommensurate (and also com- 
mensurate) configurations as consisting of an array of defects with some 
average separation between the center of one defect and the next defect. 
The occurrence of such configurations as ground states is then related to 
the energy required to create defects and also their interaction energy. 

It might appear at first sight that the ground-state properties and 
defect structures of simple one-dimensional models such as (1.1) and (1.2) 
can have little or no relevance to three-dimensional physical systems at a 
finite temperature. This turns out not to be the case. (5'1~ One reason, to be 
sure, is that modulated structures are sufficiently complicated, in com- 
parison with ordinary crystals, that any source of insight is welcome! But 
in addition, many modulated structures in three dimensions possess planes 
perpendicular to the modulation direction in which the thermal average of 
some parameter, such as position or magnetization, is essentially constant 
and the modulation is exhibited in the variation of this average from 
plane to plane. In such cases one can plausibly treat the thermal average 
in each plane as a classical quantity and assume the existence of a 
phenomenological free energy per unit area which depends on the value of 
this quantity in different planes, and which is a minimum in thermal 
equilibrium. Within this framework, a discussion of one-dimensional 
models and their static defects can be carried over to corresponding 
properties of a three-dimensional system by simply inserting "free" before 
every occurrence of "energy." 

In this paper we consider localized defects, in classical (nonquantum) 
models with short-range interactions, which relax back to some underlying 
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reference configuration with increasing distance from the center of the 
defect. While the emphasis is on static defects, the basic definitions also 
apply to (localized) dynamical defects. Our aim is to provide precise 
definitions of concepts such as the "phase shift" or "charge" associated with 
a defect and the various energies (creation, pinning, interaction) associated 
with a single defect or a small number of defects. These concepts are 
illustrated with a number of examples, and in the case of the Frenkel- 
Kontorova model they are given a geometrical interpretation using an area- 
preserving map of the phase planeJ 8'16) 

The presentation occurs in the following order. Basic definitions of 
configurations, energies, equilibrium, FK models, etc., are assembled in 
Section2, along with the definition of a localized defect and its 
"phase shift" and "charge." We also define an "interface" (a localized struc- 
ture at the junction of two distinct "phases"), and consider multiple defects 
and interfaces which are composed of more elementary defects or interfaces. 

Section 3 contains definitions and some analyses of various types of 
defect energy: the creation energy of a single defect, its pinning energy 
(work required to move the defect to a new location), the interaction 
energy of two or more defects, and the counterparts of these quantities for 
interfaces. 

The static defects of a Frenkel Kontorova model with nearest- 
neighbor interaction are discussed in Section 4 using the area-preserving 
map of the phase plane which is associated with the condition of 
mechanical equilibrium. Using the plausible assumption that a localized 
defect is associated with a set of heteroclinic points at the intersections of 
expanding and contracting manifolds, (8) the various energies defined in 
Section 3 are interpreted in terms of areas inside suitable contours made up 
from segments of the relevant manifolds. 

Previous work on one-dimensional models and uniaxial modulated 
systems which is closely related to the theme of this paper includes the 
following items. 

Aubry and his collaborators have carried out a very extensive analysis 
of Frenkel-Kontorova and related models, with particular emphasis on 
minimum-energy configurations, including ground states and "elementary" 
defect configurations/17~ Although our analysis is deliberately not limited 
to minimum-energy configurations, it owes much in terms of a general 
point of view as well as specific ideas to Aubry's work. The use of an area- 
preserving map to study properties of equilibrium configurations was also 
initiated by Aubry. 

A thermodynamic instability against the creation of localized defects is 
a well-known mechanism for phase transitions in uniaxial modulated 
systems. In this respect there have been many attempts at numerical and 
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approximate analytical calculations of defect creation and interaction 
energies for specific models. (9'18-21) Recently Fisher and Szpilka have 
proposed a general procedure for constructing the phase diagram of a 
uniaxial modulated system in the "small-fluctuation" regime./1~ The 
discussion is based on the assumption that the relevant long-period (or 
incommensurate) equilibrium or metastable states can be characterized in 
terms of a distribution of well-defined domain walls in a simple periodic 
structure. The thermodynamic stability of these states can then be discussed 
in terms of the creation and two-body, three-body, etc., interaction energies 
of the domain walls. One of the advantages of their treatment is that it 
provides a unified description of the equilibrium phases over a range of 
parameter values in the phase diagram, and a classification of the major 
and also the higher-order commensurate phases. (Our work is related to 
that just mentioned in that the procedures we present can be used for 
qualitative discussions and actual calculations when an appropriate 
phenomenological or "mean-field" description of the relevant model is 
available. These procedures also provide the ground work for an alter- 
native approach to discussing the transitions between commensurate states, 
as in ref. 4; additional details are in ref. 20.) 

The geometrical interpretation of the energy difference (sometimes 
known as the action) between stationary configurations for the Frenkel- 
Kontorova model (see Section4) has been noted previously by 
Mackay et a/., (16) who were mainly interested in transport properties of 
points on the phase plane under successive iterations of the two-dimen- 
sional area-preserving twist map. (8'21) We find this picture very helpful in 
understanding various properties of the Frenkel-Kontorova model, such as 
the tendency to "lock" into commensurate phases, pinning of the localized 
defects, and the formation and completeness of the devil's staircase. (~7) As 
the two-dimensional geometry of the phase plane plays an important role 
in obtaining many of these results, one might expect some qualitative 
changes in behavior (e.g., disappearance of the devil's staircase) for models 
corresponding to higher-dimensional canonical maps associated with 
interactions extending beyond nearest neighbors. 

2. DEFINITIONS 

2.1. Configurations and Energies 

We shall be interested in one-dimensional systems in which the 
position or state of the nth particle (atom, spin, or whatever) is denoted by 
un. For example, un may be the displacement (possibly a vector) of the nth 
atom from its equilibrium position, or it could be a real variable giving the 



Localized Defects in Classical 1 D Models 857 

(scalar) position of this atom relative to some (n-independent) origin. In a 
spin model un is the nth spin variable: in the (classical) XY model it is an 
angle measured relative to some fixed axis, in the (classical) Heisenberg 
model a point on the unit sphere. One can also consider cases in which un 
takes on only a discrete set of values (Ising model, Potts model). 

The collection {u,,} of these positions or angles or whatever is a 
doubly infinite sequence, - o o  < n <  o% or configuration, denoted by u. 
Different configurations are distinguished, when necessary, by superscripts. 
Two configurations u and ~ are regarded as physically equivalent if one is 
obtained from the other by renumbering the particles, i.e., there is some q 
such that 

~n+q=u, (2.1) 

for all n. A configuration u is periodic with period Q provided Q is the 
smallest positive integer such that 

u, + Q = u, (2.2) 

holds for all n. A superscript on Q will often be used to indicate which 
configuration has this period: Q' is the period of u', etc. 

The energy of a configuration u is defined formally as the sum 

q~(u)= ~ g(u,, u,_l ..... u,_r) (2.3) 

where the interaction K is a real-valued, appropriately smooth function of 
its r +  1 arguments. Here r is the range of the interaction: 1 for 
nearest-neighbor, 2 for next-nearest-neighbor, etc. Whereas (2.3) is not 
(in general) a convergent sum, it can still be used to define energy 
differences when only a finite number of the uj are changed, or in the limit 
when the changes are small as IJl ~ oo. 

An equilibrium or stationary configuration u is one for which 

Oq~/Ouj = 0 (2.4) 

for every j. An equilibrium configuration is locally stable provided it is a 
local minimum of O~: all "nearby" configurations have a slightly higher, or 
at least not a lower energy. There are various "degrees" of local stability 
which can be discussed in terms of the spectrum of the infinite matrix 

Ozq~/auj ~uk (2.5) 

Given a sufficient degree of local stability, one can make a plausible case 
for the existence of localized equilibrium defects (Section2.2 below). 
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However, the corresponding technical discussion goes beyond the scope of 
the present paper, in which we shall consider the properties of such defects 
assuming they exist, rather than the conditions which ensure their 
existence. 

We have written (2.4) assuming the uj are real numbers, but there is 
an obvious generalization to the case (as in the classical Heisenberg model) 
where the uj are on smooth manifolds. The terms "equilibrium" and 
"locally stable" do not apply if the u i are discrete variables. 

The average energy per particle is defined as 

N 

e =  lim lira ( N + M +  1) -1 ~ K(un,..., u,, ,) (2.6) 
m ~ o o  N ~ o o  

n - -  - - M  

provided the limit exists and is independent of how M and N tend to 
infinity. 

It is convenient to modify some of the preceding definitions in the case 
where the un are real numbers and the energy is unchanged if u,, is replaced 
by u, + a for all n, where a is some positive constant. For  lack of a better 
name, we call this an FK model (for Frenkel-Kontorova).  If the u, are 
measured in units of a, or, equivalently, a =  1, as will be assumed 
henceforth, we require that 

K(1 + u,, 1 + u,_ i,---, 1 + u~ r) = K(u,,  un 1 ..... bln--r) (2.7) 

Note that the Frenket-Kontorova model (1.1) has this property with 

x l u ~ ,  ~o) = �89 - ~o) 2 + V(uo) (2.8) 

provided V is periodic with period 1; for example, 

V(u) = -K(2rc) 2 cos(2r~u) (2.9) 

For  an FK model, two configurations u and ~ are regarded as 
"physically equivalent" if one is obtained from the other by renumbering 
the particles (2.1), or by a shift operation in which the same integer is 
added to each un, or by any combination of these, that is, provided there 
are integers q and s such that 

~ln+q=Un-~-S (2.10) 

for all n. A configuration u is periodic with period Q provided there are 
integers Q and S such that 

u n + Q = u , +  S (2.11) 
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and Q is the smallest positive integer for which this equation holds. 
Superscripts on Q and S will indicate to which configuration the "period" 
(Q, S) refers: thus, Q', S' refers to a configuration u'. The winding number 
or average separation of neighboring atoms in an FK configuration is 
defined by 

o)= lim lim ( N + M +  1) ~ (UN--U M) (2.12) 
M ~ o o  N ~ o o  

provided the limit exists and is independent of how M and N tend to 
infinity. For a periodic configuration (2.11), 

~o= S/Q (2.13) 

The enthalpy of an FK configuration is obtained by replacing K in 
(2.3) with the modified interaction 

K(u., u._~,..., U._r)--~(Un--U._I) (2.14) 

where a is a "stress" or "tension. "(19) (It is denoted by 7 in ref. 19 and # in 
many of Aubry's papers.) The equilibrium and local stability conditions for 
a given configuration are independent of a, while the enthalpy per particle 
e(~), defined by replacing K in (2.6) with (2.14), is given by 

e ( ~ )  = 8 ( 0 )  - ~co ( 2 . 1 5 )  

assuming co is well defined, where 8(0) is of course the energy per particle e. 

2.2. Defects and Their Phase Shifts 

We shall call u' a defect configuration relative to a reference con- 
figuration u provided that, after (if necessary) a suitable renumbering of 
particles [see (2.1)], 

t 
U n ~ U n a s  n ~ - - ~  

t 
U n ~ u  n _ q  a s  n ~  - ] - o o  

(2.16) 

where the left arrow means "tends to" in an appropriate sense. Typically 
there is some appropriate metric d ( ,  ), and d(u'n, un) goes to zero as 
n --* - or. We shall always assume that a defect is localized in the sense that 
u', tends to un, or Un_q, as the case may be, sufficiently rapidly to ensure 
convergence of the sums in energy expressions (Section 3), and possibly 
other desirable properties. 

The integer q in (2.16) is the phase shift of u' relative to u, and can be 
thought of as the number of extra particles which must be added to the 
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reference configurat ion to produce the defect; see Fig. 1 for an example 
when q = 1. This figure also illustrates the fact that  if the reference 
configurat ion has a period Q, the phase shift can equally well be set equal 
to q + vQ, where v is any integer. 

For  F K  models, (2.16) should be replaced with 

u ' ~ u n + m  as n - - * - o o  
(2.17) 

u'n-- .Un_q-Fm-Fs as n--* +oo 

where m and s are integers (in general, multiplying a, but  we are assuming 
that  a = 1), and the phase shift is defined as the pair  (q, s). (Figure 2 
illustrates the case m = 0, q = 3, s = 1, where the reference state is periodic 
with Q = 5 ,  S = 2 . )  When  the reference state is periodic, an equivalent 
phase shift is 

(q + vQ, s + vS) (2.18) 

where v is any integer. On  the other  hand, the quantities 

= q S -  sQ (2.19) 

gl -- q - s/o) = O/S = q - sQ/S  (2.20) 

are independent  of  the choice of  v. Note  that  0, which we shall call the 
charge of the defect, is also defined by the first equality in (2.20) for a 
nonperiodic  reference configurat ion with a well-defined nonzero  winding 
number.  

The term "charge" is suggested by what  happens if the defect u' is dis- 
placed a distance S to the right to form a defect u*, with 

r u , + Q = u , +  S (2.21) 

1 2 3 4 5 6 7 8 9 

Fig. 1. An example of a defect in a period-three configuration u of the chiral XY model. The 
defect configuration u' can be obtained by inserting one extra spin (indicated by the dashed 
arrow) in u, corresponding to a phase shift q = 1, or by inserting the four spins 4, 5, 6, and 7 
corresponding to a phase shift q = 4. 
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1 2 3 4 5 6 7 8 9 t0  1112 1 3 1 4 1 5  

1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3  1 4 1 5  

1 2 3 4 5 6 7 8 9 1 0  1 1 1 2 1 3  1415  

Fig. 2. Defects in a Q = 5, S=2  configuration u of the Frenkel Kontorova model. The 
configuration u' represents a defect with a phase shift q= 3, s= 1. The configuration u* 
shows the defect translated to the right by two periods of the potential, with a total atomic 
displacement of qS- sQ = 1. Thus, the defect has a charge of I/2. 

(See Fig. 2 for the case S = 2 . )  One can show that the total atomic 
displacement 

0 = ~ (u* - u',) (2.22) 
n 

is given by (2.19). Thus, if each a tom carries a unit charge, the current 
produced by a steady mot ion  of the defect is the same as if the defect had a 
charge of O/S, whence (2.20). (This a rgument  is taken from ref. 15.) 

Note  that  if (2.16) or  (2.17) is adopted  as definition, one can just as 
well speak of u as a defect state relative to the reference state u', with a 
phase shift - q  or  ( - q ,  - s ) .  Similarly, u* in (2.21) may  be considered a 
defect state relative to u' as a reference, with phase shift (0, 0), since 

' (2.23) u * ~ u .  as 1 , 1 ~  

a consequence of  (2.17), (2.21), and (2.11). While this expanded not ion of a 
"defect" may  seem strange at first, it has some technical advantages,  which 
will emerge in Sections 3 and 4. 

2.3.  M u l t i p l e  D e f e c t s  

It is often convenient  to think of a defect (or interface) as a composi te  
object formed of  two simpler defects (or interfaces). Thus, in Fig. 3 the 
configurat ion ~i contains both  of the defects represented by u' and u" 
relative to the reference configurat ion u. 

This example suggests the following approach  to thinking about  how a 
complex defect ~ can be decomposed  into two simpler objects. We suppose 
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Fig. 3. 

1 2 3 4 .5 6 7 8 9 10 

1 2 3 4 15 6 7 8, 9 10 11 

0 1 2 3 4 5 6 7 B 9 10 

0 1 2 3 4 5 6 7 8 g 10 11 

An example of a two-defect configuration ~ relative to a period-2 reference 
configuration u. The corresponding single-defect configurations are u' and u". 

tha t  if, u", u' ,  a n d  u are n u m b e r e d  in  such a way  tha t  there  is a n  in teger  m 

such tha t  
t t  

u'. ~- u n a n d  u.  - t~. for n ~< m 
(2.24) 

1 tt  u~ -~ ~7~ a n d  u~ - u~ for n ~> m + 1 

Th i s  is r ep resen ted  schemat ica l ly  in  Fig.  4, where  n is r epresen ted  by  
h o r i z o n t a l  d is tance .  

Here  ~ is used in  a fairly loose  sense;  thus ,  for the exam ple  in Fig. 3 

we w o u l d  say tha t  (2.24) ho lds  for m = 5, b u t  also (wi th  less accuracy)  for 
m = 4 or  6, o r  even  wi th  m = 3 or  7. However ,  we requi re  tha t  ,-~ b e c o m e  a 
strict  equa l i t y  in  the l imi t  as Inl becomes  infini te ,  or, in  o the r  words ,  tha t  

t t t  
UnhUrt;  Un ~ U n  as r / ~  -- 

(2.25) 
u' .-+gt.;  u ' - - + u ,  as n--+ +oo  

q.~ "tZ 

ad,' ~ a/, 't 

'U," aZ I 

I 

Fig. 4. The reconnection formula (2.24) or (2.25) is indicated schematically with particle 
position on the vertical axis plotted against particle number on the horizontal axis. 
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We shall call (2.25) a "reconnection" formula, because in most cases of 
interest to us u' and u" can be obtained by a process suggested by (2.24): as 
a first approximation, let u~, be u, for n ~< m and ti for n > m; similarly let u~' 
be ~n for n ~< m and u~ for n > m, and then let both configurations relax to 
their final values. When (2.25) holds, we shall say that fi "contains" the 
defects u' and u", and further that the defect u' is to the right of u", or u" is 
to the left of u'. This terminology is motivated by (2.24). 

Note that given ~ and u, the choice of u" and u' need not be unique, 
especially with sufficient latitude in the use of ~- in (2.24). This ambiguity 
seems unavoidable, and is not serious for our subsequent discussion. 

Using (2.25), one can show that the phase shift ~ of t~ (relative to u) is 
given by the sum of the phase shifts of u' and u", 

c] = q ' +  q" (2.26) 

In the FK case, where the phase shift is the pair (c], s one also has 

= s' + s" (2.27) 

Consequently, the charge O, (2.20), is additive, provided co is defined and is 
the same for u and ~. Such additivity is a plausible property for a 
reasonable definition of a multiple defect. 

Properties of multiple defects g which contain more than two elemen- 
tary defects can be discussed by iterating the reconnection procedure (2.24) 
or (2.25): first t~ is decomposed into two defects u' and u", and one or both 
of these are then decomposed into two more defects, etc. Once again, the 
procedure does not lead unambiguously to a unique set of "elementary" 
defects, although in the case in which the latter are separated by distances 
larger than some characteristic length in which defects "relax" to the 
reference configuration, a suitably tight use of -~ in (2.24) can remove the 
ambiguity. 

2.4 .  I n t e r f a c e s  

We shall call a configuration u ~p an interface between two "phases" 
and fl, represented by configuration u ~ and u p, provided that (after a 
suitable renumbering and shift, if needed) 

u~ ~ u ~  as n - - * -  

u~  ~ u~ as n --* + co 
(2.28) 

Figure 5 shows two examples in which u" and u s are periodic phases whose 
character can be inferred from the "tails" of u ~. A defect as defined by 
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Fig. 5. 

Tang and Griffiths 

(~ 

(b) 

Interfaces between (a) a period-2 phase (left) and a period-3 phase (right); (b)two 
distinct period-2 phases. 

(2.16) or (2.17) can be thought of as a special case of an "interface" in 
which u ~ and u ~ are related to each other by a renumbering and/or a shift, 
so that they are physically equivalent, and thus identical "phases." 

In the special case of an interface in an FK model between two 
periodic phases with equal nonzero winding number, 

o3 = S ~ / Q  ~ = S ~ / Q  ~ (2.29) 

in an obvious notation, one can identify a charge  gl in the same manner as 
for a defect (Section 2.2 above). Thus, let Q be the least common multiple 
of Q~ and Q~, and let S be coQ. If the interface is shifted to the right by a 
distance S as in (2.21), one can show that the sum of the corresponding 
atomic displacements is 

Q 
0 = 2 (u ; -  .~) (2.30) 

j = l  

and, as in (2.20), the charge is 

gl = gl/S (2.31) 

The equality of co in both phases, i.e., equal density, (2.29), is essential: 
otherwise the interface cannot be moved along using a finite total 
displacement of all the atoms (and without adding or deleting atoms). 

In general, a phase shift cannot be assigned to a single interface, but it 
can be defined for a pair of "complementary" interfaces u ~B and u ~ (see 
Fig. 6), which (after suitable renumbering and shifting) satisfy a 
"generalized reconnection" formula [compare  (2.25)]: 

u~ ~ ~ u~ as n ~ - oe; u~" ~ /.,/~ __q -~ 5' as n ~ + oc 
(2.32) 

Then, in an F K  model, (q, s) is the phase shift of the pair u ~,  u ~ relative 
to the pair u ~, uB; otherwise, the phase shift is q, and s should be omitted or 
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Fig. 6. 

u a = u  

U ~ 

Ua# 

up, 

2Z' 

U ft 

~ / J J / / / / J / / / / / J / / / / / 1 / / / / / / / / ~ / / / / / ~ f / ~  

Schematic illustration of interfaces c~fl and ,6e between phases c~ and ft. Note that both 
interfaces are present in ~. 

set equal  to zero in (2.32) and the equat ions  which follow. If u ~ or u ~ or 
both  are periodic, an equivalent  phase  shift [ c o m p a r e  (2.18)] is 

(q + v~Q ~ + vaQ ~, s + v~S ~ + v~S ~) (2.33) 

where v ~ and v ~ are any integers, but  are set equal  to zero if the 
cor responding  phase is not periodic. 

Tha t  such a phase shift makes  sense is suppor ted  by the following 
const ruct ion (see Fig. 6) in the case in which u ~ is periodic. Let  u = u ~, and 
let u' and u" be displacements  of  u ~p and u ~" given by the formulas  

! t t  f l ~  
Lt n = v S c~ " ~  b l~  ~ - vQa  , U n = - -  S .qt- ~l n + q (2.34) 

where v is some integer. Next  construct  a conf igurat ion t~ so as to satisfy 
(2.24): for v sufficiently positive it will be of  the form suggested in Fig. 6, a 
segment  of  phase  ct inserted inside phase  ft. With  the choices in (2.34) one 
can show, using the periodici ty of  u = u ~, that  the reconnect ion formula  
(2.25) is satisfied, and an addi t ional  calculat ion shows that  the phase shift 
of  ff regarded as a defect relative to the reference state u ~ is 

(q + vQ ~, s + vS ~) (2.35) 

Tha t  is to say, the phase shift of  the two interfaces combined  as a defect in 
t7 is consistent  with the value (or one of  thee values) assigned to the same 
pair  by (2.33). 
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t " / /N/ i / / / /N/N/ / /H/NMi/~N/H/ /N/ /HiM/N/ /HH/ /~  

Fig. 7. Schematic illustration of the reconnection of a defect configuration u' (the defect is 
indicated by a large circle) and an interface configuration u" to yield a reference configuration 
u plus a configuration 6 containing both an interface and a defect. 

A reconnection procedure of the sort just discussed can be used in 
other cases in which there are several interfaces present, or some mixture of 
interfaces and defects. As an example, see Fig. 7, where the large circle 
represents a defect. 

3. DEFECT ENERGIES 

3.1. Energy of a Single Defect 

Let u' be a defect configuration relative to a reference configuration u 
[-see (2.16) or (2.17)]. The (excess) defect  energy can be thought of as 

e' = e(u ' )  = e(u'; u) = ~ ( u ' )  - cI)(u) (3.1) 

where we shall have to provide a more precise interpretation of the 
right-hand side, as the sum (2.3) diverges. We shall use the short form e' 
and e(u ' )  when the reference configuration is obvious from the context. 

Define 

K'.=X(u;, u;_l,..., u; r) (3.2) 

and similarly Kn, Kn, etc.: any superscript (or lack thereof) on u is trans- 
ferred to K~. The conditions (2.16) or (2.17) [note (2.7) in connection with 
the latter] lead to 

K~n---~Kn a s  n---~ - - o 0  

K ' , ~ K n _ q  as n ~  + ~  
(3.3) 

provided K is suitably continuous. 
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The simplest situation is that of zero phase shift, q = 0, in which case a 
plausible explication of (3.1) is 

e'= ~ (K',-Kn) (3.4) 
/~ = oo  

assuming that the convergence in (3.3) is sufficiently rapid that the sum Js 
absolutely convergent. (We shall hereafter assume that the technical 
conditions required for the convergence of this and similar sums below are 
satisfied, as they will not be discussed in this paper and have to be checked 
in particular cases.) 

For q -r 0, we define 

e' = -qe  + lim K', - (3.5) 
N ~  n N n 

The limits on the two sums are chosen such that the N ~ oo limit will exist 
[see (3.3)]. As a consequence, the first sum has q extra terms (q may be 
negative), reflecting the fact that the defect has q extra particles. If each of 
these additional particles initially had a reference energy e, then the right 
side of (3.5) would represent the work required to add them to the 
reference configuration. When the reference configuration u has a 
well-defined energy per particle, (2.6), we choose e equal to this energy: one 
can then imagine that the extra particles required to form u' are particles of 
u "pulled in from infinity." That a compensating term -qe is needed in 
(3.5) can also be seen by considering a periodic configuration, where q can 
be altered by adding to it any integer multiple of the period Q. Such a 
change has no effect upon e' in (3.5) because of the fact that 

Q 
(Kj - e) = 0 (3.6) 

j = l  

Putting the matter in still another way, a "defect" in which an entire extra 
period of q = Q particles is inserted in a reference configuration of period Q 
is indistinguishable from the reference configuration, and with e the average 
energy per particle, (3.5) yields e ' =  0, as it should. 

One can rewrite (3.5) in the equivalent form 

e ' =  ~ ( K ' - K , ) +  ~ ( K ' - K n  q)+A, ,  (3.7) 
n =  - - c o  n = m + l  



868 Tang and Griffiths 

where m is any integer, and A~ is given by 

q=0 :  

q>0 :  

A m = 0  

am= ~ (K~-e) (3.8) 
n = m + l  q 

m - - q  

q<0:  Am-'~- ~ (e-K.) 
n = m + l  

[-A convenient mnemonic for remembering or deriving formulas of this 
type is to note that the infinite sums are arranged to give absolute 
convergence consistent with (3.3), and Am compensates for any terms 
which have been omitted from or duplicated in the (formal) sums for 
r  with a reference energy e subtracted from each extra K,.] 
Since e is the average energy per particle, the average of a m vanishes in the 
sense that 

N 

lim lim ( M + N + I )  -1 ~ Am=0 (3.9) 
M - - * ~  N - ~ o o  

rtz = - - M  

If u is a periodic configuration, then 

n + Q - 1  

Z Am=0 (3.10) 
m = n  

The defect enthalpy as a function of a, e'(a), for an FK model, 
assuming that u has a well-defined winding number co, (2.12), is obtained 
by replacing K', in the expressions above by 

X'n - e ( u ' .  - u'._ 1) (3.11) 

[-see (2.14)], along with the analogous substitution for K,, and replacing 
by e(a), (2.15). The dependence of e'(a) on ~r is easily calculated from (3.5), 
noting that the first sum becomes 

N 

K'.--a(U'N--U' N-l) (3.12) 
n = - - N  

an analogous change takes place in the second sum, and that (2.17) applies. 
The final result is 

e ' ( a )  = e '  - -  a ( s  - -  q o )  = e '  + cr~/Q 
= e ~ "Jr r (3.13) 
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where e' is the defect energy, that  is, the entha lpy  for ~r = 0 ;  ~ =  SO is 
defined in (2.19); c) is the charge, (2.20); and  the last equali ty in (3.13) 
assumes co r 0. 

3.2. P inning Energy  

Let u be a locally stable, periodic reference configurat ion of per iod Q, 
u ~ a locally stable defect relative to u, and u 1 a t ransla t ion of this defect Q 
particles to the right, which is to say 

t o + S  (3.14) b t n  ~ U n _ Q 

. o (in place of u',) for an F K  model  [see (2.11)],  otherwise, S = 0 .  As u, 
satisfies (2.17) or (2.16) as the case m a y  be, the periodici ty of  u implies that  

1 0 (3.15) u n ~ u .  as I n ] ~ o o  

Thus,  one can imagine a cont inuous  displacement  of a toms carrying one 
defect into the other: a family of configurat ions u', 0 ~< t ~< 1, interpolat ing 
between u ~ and u I with the p roper ty  that  u', is a cont inuous  function of t 
for each n, and is a lmost  cons tant  as jnl --, oo. The  cor responding  defect 
energy e(u ' )  will (plausibly) possess a m a x i m u m  as a function of t. Let e m 
be the m i n i m u m  of these m a x i m a  over  all possible interpolat ing families u'. 
The pinning energy  ep is defined as 

ep = e m - e(u ~ (3.16) 

and can be thought  of as the a m o u n t  of external work  which must  be done 
to br ing the defect u ~ over  the lowest saddle point  of  the energy surface 
which separates it f rom u 1. 

Under  the plausible hypothesis  that  em is actually achieved in a 
specific saddle point  configurat ion u ", the pinning energy can be writ ten as 

e p =  ~ ( K ' f f - K  ~  ~ (3.17) 
n - -  - - o o  

that  is, it is the defect energy of u m relative to the reference state u ~ or, 
equivalently,  u 1. No te  that  the phase  shift of  u m relative to u ~ or u 1 is zero. 

3.3. D e f e c t  In te rac t ion  Energies 

Corresponding  to the reconnect ion formula  (2.25), we define a 
reconnect ion energy  by means  of the formal  expression 

er(U', u"; u, ~) = ~ ( u ' )  + qS(u") - q~(u) - qs(~) (3.18) 

822/53/3-4-21 
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interpreted as the sum 

er(u', u"; u, ~) = ~ (K'n + K 2 -  K s -  Kn) (3.19) 
n ~  - - o o  

which will converge absolutely [given appropriate technical con- 
d i t ions - see  remarks following (3.4)]. The absence of phase shifts in (2.25) 
makes (3.19) a simpler formula than (3.5), and the former makes sense 
even in the absence of an average energy per particle. 

The decomposition of a multiple defect into simpler defects was 
discussed in Section 2.3. The results of such a decomposition may not be 
unique. However, as long as the simpler defects are defined in some way, 
their energies of interaction can be obtained by a process of subtraction. 
Some examples will illustrate how this is done, and demonstrate the. utility 
of (3.19) as an explicit expression for an interaction energy. 

Let UAB= ~ be a defect configuration which can be decomposed into 
two defects uA=u"  and uB=u ' ,  all relative to the same reference con- 
figuration u, in accordance with (2.25); see also Fig. 3. One can then write 

e( u AS) = e( u A) + e( u B) + e As (3.20) 

where this equation defines the interaction energy e,~s. An explicit 
expression in terms of (3.18) and (3.19) is 

e As = CI)(u ~s)  + Cb(U) -- ~(U A) -- crp(uS) 

= er(U AB, l.l; U A, U B) = 2 (K~ s + K ,  - K A - K ' , )  (3.21) 
n 

Next consider a configuration u asc  containing three defects u a, u s, u c, 
all relative to a reference u, with defect A to the left and defect C to the 
right of B. [For  "left" and "right" in this connection, see the paragraph 
following (2.25).] To be more precise, assume that u A s c =  ~ can be decom- 
posed into configurations u A= u" and uSC= u' satisfying (2.25), or equally 
well into configurations u a S =  u" and u C =  u' again satisfying (2.25); and 
that in turn u as  can be decomposed into u A and u s, with u A to the left 
of u s (as in the previous paragraph), and u s c  can be decomposed into 
u s and u c, with u s to the left of u c and identical to the u s obtained by 
decomposing u As. One can then define a three-defect interaction energy 
eAsc  by means of the formula 

e ( u A e C ) = e ( u a ) + e ( u S ) + e ( u C ) + e a s + e e c + e a a c  (3.22) 

where e.4, and enc  are defined by (3.20) and its analog for usc.  Note the 
absence of a term eAc in (3.22); because of the linear ordering in these one- 
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dimensional systems it is most convenient to assume that such a term has 
been incorporated into eABC. 

An explicit expression is 

CAB C = er(U ABC, uB; U AB, U BC) 

= ~ ,~c KB KA~ KBc~ (3.23) (K, +--~ - - - ,  - - - n  , 
n 

where one can think of u s as the reference configuration to which one can 
add an A or a C defect, or both. (Note that the value of eABC depends on 
the two-defect configurations u AB and u Bc, the choice of which need not be 
uniquely determined by uABC.) 

3.4. Energies of Interfaces 

We know of no unique way an interface energy e~ ~ can be assigned to 
a single interface connecting phase e to phase/3, such as those sketched in 
Fig. 5. However, there is a well-defined energy e~ ~ + e~ ~ associated with two 
complementary interfaces u ~ and u ~,  namely the reconnection energy 

eR(u ~, u~; u ~, u ~) = qS(u ~ )  + q~(u ~ ) - ~ (u  ~ ) - ~ (u  ~ ) (3.24) 

associated with the generalized reconnection formula (2.32). [We use eR 
rather than er, (3.19), because (2.32) permits a phase shift and (2.25) does 
not.] In circumstances in which u ~a and u a~ are related by symmetry, it is 
plausible to assume that e ~  and e~" are equal, and to assign half the total 
energy, (3.24), to each. 

In order to make the formal expression (3.24) explicit, we need to 
assume that u ~ and u ~ have the same average energy per particle e. The 
result is 

eR(u ~ ,ua~;W,u  ~)= ~ (K; ~ ~ + - K . -  
n =  - -oo  

+ ~ (K~ ~ + K  ~ X ~ K~)+Am (3.25) - -  - - n  - -  -- /7 -- q - -  
n - - m +  l 

where 

q=0: Am=0 

q > 0: Am = ~ (K,~ - e) 
n = m + l - - q  

r n - - q  

q < 0 :  Z l m =  2 (~  - -  K ~ )  

r l = m  + 1 

(3.26) 
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One way of deriving this is to introduce an auxiliary configuration fi~ with 
-~ tends to ~ and to ~ s as n tends to - o o  and the property that u n u, IA n q--[- 

+ 0% respectively. Then 

eR(u ~s, usa; u ~, u s) = er(u ~,  u~; it ~, u ~) + e (~ ;  u ~) (3.27) 

where the right side is evaluated using (3.19) and (3.7). 
The discussion of Section 3.2 above also applies to the pinning energy 

ep  of a locally stable interface u ~s separating two locally stable periodic 
phases u ~ and u s with the same average energy per particle, and the same 
winding number co, (2.29), in the case of an FK model. Let Q be the least 
common multiple of Q~ and Q~, and let S be e)Q for an FK model and 0 
otherwise. If u ~  AB and u ~ is defined by (3.14), the discussion of 
Section 3.2 applies except that all defect energies are to be evaluated 
relative to u ~ as a reference state. Thus e(u') should be replaced by e(u~; u~ 
and ep ----- e m in place of (3.16); formula (3.17) is unchanged. Note that since 
the pinning energy is related to changes in the interface energy as the 
interface moves, the fact that eT~ is undefined causes no problems. 

Similarly, the ambiguity in the definition of single interface energies 
does not interfere with defining the interaction energy of two interfaces, or 
an interface with a defect, provided these can be obtained by a suitable 
application of the reconnection formula (2.25) or its generalization (2.32). 
For  example, consider the configuration ~i in Fig. 6, which represents a fie 
interface separated from an c~fi interface by a region containing phase e. 
The interaction energy of these interfaces, which is analogous to the 
interaction energy of two defects, the eAs of Section 3.3, is given by the 
reconnection energy (3.19), with u, u', u", and ~ described in the paragraph 
containing (2.34). See Fig. 7 for another example: the interaction energy 
between the defect and the interface will again be given by (3.19), assuming 
(2.25) is satisfied. 

4. DEFECTS A N D  AREA-PRESERVING M A P S  

4.1. Maps  of the Phase Plane and Phase Cyl inder 

In this section we restrict ourselves to FK models with nearest- 
neighbor interactions, r = 1 in (2.7), for which K satisfies the "convexity" 
condition 

02K(u2, Ul)/0U 2 0U 1 ~ C • 0 (4.1) 

for some negative constant c. (17) Given any configuration u, define 

p ,  = OK(u,, u ,_  1)/Ou, (4.2) 

~,  = - #  K( u,  + 1, u , ) /  Ou, (4.3) 
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as "momenta" conjugate to u,; note that in a stationary configuration, 
(2.4), ~ .  = p~. 

Given that K is suitably smooth and satisfies (4.1), there is, as is well 
known, an area-preserving, invertible map T of the phase plane N z onto 
itself with the property that for any stationary configuration {u,}, 

T~ ,=  ~,+1 (4.4) 

where 
4o = (u.,  p . )  (4.5) 

That is to say, { 4,, } is an orbit of the map T. For the specific example of 
(2,8) with V given by (2.9), T is given by 

Un+l =un+Pn+l (4.6) 

P n  + 1 ~--- P n  -[- ( K/2n ) sin 2nun 

As usual, iterates of T will be denoted by T v, where v is a positive or 
negative integer, and T o is the identity map. Thus, T 2~n is ~ 2- 

A general point in the phase plane will be denoted by (u, p), where u 
in this connection is a real number and does not denote a configuration 
{ u~ }. By identifying values of u which differ by an integer, the phase plane 
is mapped onto the phase cylinder S ~ x N, and corresponding to the map T 
there is a map T of the points (~, p) of this cylinder onto itself, which is 
again invertible and area preserving. Thus, in the example (4.6), replace u 
by ~, and understand the first (not the second) equation as an equality 
mod 1. An orbit { ~, } of T in the phase plane is mapped into an orbit { ~'n } 
of T on the phase cylinder. However, in the reverse operation in which the 
cylinder is "unrolled" onto the phase plane so that each point on the 
cylinder produces a collection of points with the same p value and all 
values of u differing from ~ by integers, an orbit { ~ } of T will in general 
lead to a collection of orbits of T related to each other through the shift 
operator (or map) 

r(u, p) = (1 + u, p) (4.7) 

4.2. Contract ing  and Expanding Mani fo lds ,  Heterocl in ic  Points 

Consider a stationary configuration of period Q, (2.11). There is a 
corresponding orbit of T on the phase cylinder made up of Q distinct 
points ~j, 1 ~< j~< Q, each of which is a fixed point of TQ. As the map is 
area preserving, the product of the two eigenvalues of ]'Q linearized around 
one of these fixed points (the eigenvalues are the same for each ~j) is equal 
to 1. As Aubry and others have pointed out, a configuration which is 
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locally stable will, in general, correspond to the "hyperbolic" case of two 
real eigenvalues, one with magnitude less than and the other with 
magnitude greater than 1. In what follows we restrict ourselves to this 
situation. 

Then, passing through each (hyperbolic) fixed point ~j one expects to 
find two smooth curves which are invariant under TQ: a contracting or 
stable manifold Cj and an expanding or dilating or unstable manifold /~j. 
Any point on Cj approaches ~'j under successive iterations of 7 "Q, while any 
point on/Sj approaches ~'j under iterations of T-Q. Consequently, two con- 
tracting manifolds corresponding to different fixed points cannot intersect 
each other, nor can two expanding manifolds intersect each other. 
However, an expanding and a contracting manifold can intersect each 
other at heteroclinic points (known as "homoclinic" points if the manifolds 
are associated with the same fixed point), which are thus associa.ted in a 
unique way with the two manifolds in question. [-In exceptional cases the 
expanding manifold associated with one fixed point may coincide with the 
contracting manifold of another (or the same) fixed point.] 

The map T then maps the different (assuming Q>  1) contracting 
manifolds into each other, the different expanding manifolds into each 
other, and heteroclinic points onto heteroclinic points. The same holds for 
any iterate of ~ or 7" 1. 

If the phase cylinder is "unrolled" onto the phase plane, the fixed 
points and manifolds just discussed are imaged in points and curves which 
are mapped into each other by the maps T and T, (4.7). The fixed points of 
~Q are imaged in collections of points forming orbits, (4.4); in some cases 
there is just one orbit, but in general there will be more than one. Through 
a point ~n on the orbit {in} there pass contracting and expanding 
manifolds C, and D, corresponding to their counterparts on the cylinder. 

Figure 8 shows the situation schematically for Q = 3, S = 2: the points 
labeled 1, 2, 3 belong to one orbit and i, 2, 3 to the other orbit. Heavy 
lines indicate expanding and light lines the contracting manifolds. The 
complete manifolds are extremely complex curves, and the figure only 
shows the portions which are "close," in terms of distance measured along 
the manifold, to the orbit points. 

In general, C, is not invariant under T Q or under any iterate of T. It 
can, however, be identified as a contracting manifold in the sense that if 
and/~ are any two points in Cn, then 

TmO~ --~ T m ~  a s  m ~ +oo (4.8) 

in the sense that the Euclidean distance in the plane between T"e and Tm/~ 
tends to zero as m becomes infinite. In an analogous sense D~ is expanding: 
(4.8) with T m replaced with T -m holds, with c~ and/~ any two points in Dn, 
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0.5 1,0 ~.~ 

Fig. 8. Orbits with Q = 3, S = 2 and the corresponding contracting and dilating manifolds of 
the map T defined by Eq. (4.6) at K =  2. The open squares labeled 1, 2, and 3 are successive 
points on one orbit, and the solid squares labeled i, 2, and 3 are successive points on another 
orbit. The heavy and light lines are the associated dilating and contracting manifolds, 
respectively. 

As the different Cj do not intersect each other, and if we assume (as 
seems plausible) that a given Cj does not intersect itself, the corresponding 
contracting manifolds in the phase plane cannot intersect each other, and 
the same is true of the expanding manifolds. We shall again use the term 
"heteroclinic" point to refer to an intersection of an expanding and a 
contracting manifold. Note that the orbit points ~n obtained as images of 
the periodic orbit when the phase cylinder is "unrolled" are heteroclinic 
points under this definition. 

If ~a and ~b are heteroclinic points associated with (lying on the inter- 
section of) the same pair of expanding and contracting manifolds D and C 
and if in addition one can be obtained from the other by successive 
applications of the map T and/or the shift 3, i.e., 

~b = "cVTV' ~a (4.9) 

for some integers v and v', we shall call them equivalent heteroclinic points. 
The preceding discussion identifies the manifolds which are useful for 

discussing equilibrium defects in a periodic reference configuration. The 
situation for nonperiodic configurations, for example, those with an 
irrational winding number co, is not so clear. Nonetheless, it is plausible to 
assume that given a locally stable reference configuration, and perhaps in 
other cases as well, there is a similar network of expanding and contracting 
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manifolds passing through the points of the orbit and mapped into each 
other by T. This is the crucial feature assumed in all of the discussion 
below. 

4.3. Equilibrium Defects and Heteroclinic Points 

The physical significance of the contracting and expanding manifolds 
in the phase plane can be understood in terms of the example in Fig. 9. 
Here an external force f applied to atom 5 in the locally stable equilibrium 
configuration {u,} shown in Fig. 9a results in a configuration {u*} shown 
in Fig. 9b, where all atoms except 5 are in equilibrium. The corresponding 
points ~n and ~* in the phase plane are shown in Fig. 9c; note that 
correspondence of the horizontal positions in Fig. 9c with those in Figs. 9a 
and 9b. For n = 5 one has 

p* = #* + f  (4.10) 

using (4.2) and (4.3) with asterisks added to the symbols, and hence two 
distinct points in the phase plane, r and ~*, the former above the latter, 
since f is positive. The counterpart of (4.4), 

~,+1 "* =T~* (4.11) 

(o) 

1 2 3 4 5 6 7 8 

(b) 

1 2 3 4 5 6 7 B 

az 

(d) 

~ u  

Fig. 9. A force applied to particle 5 in (a) the equilibrium configuration results in (b) dis- 
placements and (c) the phase plane. (d) Enlargement of a portion of (c). The area corresponds 
to the work required to change (a) to (b) (see text). 
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holds for all n except n = 5, for which one has 

~ '  = T(* (4.12) 

Given that {u,} is locally stable, it is plausible that u* approaches un 
and thus 4" approaches ~ as n ~ - o o .  Thus, when n is sufficiently 
negative, ~,* should lie on the expanding manifold D,  through ~,. But if 
this is so, (4.4), (4.11), and the fact that Tmaps  D,, onto Dn+~ imply that 
4" is on D~ for all n~<5. By the same reasoning, 4" falls on C,, the 
contracting manifold through ~,, for all n > 5, and ~;~ falls on Cs. 

Next, consider an equilibrium defect configuration u' satisfying (2.17) 
with m = 0, relative to a locally stable configuration u. The corresponding 
orbit {~'~} has the property 

~' -o ~, as n --, - oo  

~ 'n~rs~,_q as n--* +oo 
(4.13) 

Following the preceding discussion, we infer that ~', lies on D n and on 
rsCn_ q Ethe manifold obtained by shifting, (4.7), the contracting manifold 
through ~n- ~]- Thus, each point ~'~ of  the defect orbit is a heteroclinic point, 
at the intersection of Dn and rsC,_q. The situation is illustrated 
schematically in Fig. 10a for the reference state, Fig. 10b for the defect with 
q =  -1 ,  s = 0 ,  and Fig. 10c for the corresponding points and manifolds in 
the phase plane. 

(a) 

~ U  

Fig. 10. (a) A reference configuration and (b) a q =  -1,  s = 0  defect shown in (c) the phase 
plane, along with segments of the dilating (heavy) and contracting (light) manifolds. 
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4.4. Energy Changes as Areas 

By equating the energy change of a semi-infinite chain of atoms to the 
work done on the end atom during a quasistatic displacement, it is possible 
to interpret defect energies as areas in the phase plane. To begin with, 
consider a finite chain of atoms M<~j<<.N. Let {u j} be a family of 
configurations depending smoothly on t for 0 ~< t ~< 1 and satisfying the 
equilibrium condition (2.4) for all interior atoms M < j < N and all t. With 

N 
~Mu(Ut)= ~ K(uj, uj_l) (4.14) 

j = M + I  

the energy of the finite chain, one finds by using (4.2) and (4.3), and noting 
tha t /~  = p~ in the interior of the chain, 

~ M N ( U l ) - -  I~ MN(UO) = f~ dt ~ MU(Ut)/Ot 

PN dUN -- fi~ du' M = WMN (4.15) 
L R 

where F c and F R are appropriate smooth curves in the phase plane. As P~v 
and - / ~ u  are the external forces which must be applied to atoms N and M 
to maintain mechanical equilibrium during the quasistatic transformation 
carrying u ~ to u 1, (4.15) has the interpretation that the energy change is 
equal to the work WMN done by these forces. 

Next consider a semi-infinite chain - oe < j ~ N, and suppose that for 
all t, 

~ o (4.16) Un --~ Un ~ / ' /n  as  /'/ ---.* --~3(3 

We then expect (Section 4.4 above) that for all j<~N, ~j= (u~, p~) lies on 
the expanding manifold Dj passing through ~j. Thus, in the limit, as M 
goes to - 0 %  (4.15) yields the result 

W~v = fr~ p du (4.17) 

for the work done during a displacement of atom N, where the superscript 
L indicates a semi-infinite configuration to the left of N, and FN L is an 
appropriate segment of Du. Similarly, for a semi-infinite chain M ~< j < oo 
to the right of M (superscript R), assuming 

u~,~ o Un=Un as n ~  +oo (4.18) 
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one obtains the expression 

W M = - ~  pdu (4.19) 
Jr f, 

where the integral is over a suitable segment F ~  of the contracting 
manifold C~.  

As a first application of these formulas, consider the work required to 
move particle 5 from its position in Fig. 9a to that in Fig. 9b. This is the 
sum of (4.17) and (4.19) with N = M = 5 ,  and is equal to 

W5 = ;r5 p du (4.20) 

where Fs, shown in Fig. 9d, which is enlargement of the region of the phase 
plane near d.5, consists of a segment of C5 from ~ '  to 45, and a segment of 
D 5 from 45 to 4" The direction of integration is indicated by the arrows; 5" 
note that the one on C5 properly accounts for the minus sign in (4.19). One 
can extend the integration path to a closed contour by adding the vertical 
segment, which contributes nothing to S pdu. Then W 5 is just the 
cross-hatched area inside the contour, and is positive, since the enclosing 
contour has a clockwise sense. 

As a second application, we calculate the energy required to put 
together parts of two locally stable configurations u and t~ to form an 
equilibrium configuration u' satisfying (2.25). The process is illustrated 
schematically in Fig. 11. Choose some m (m = 0 in Fig. 11) and from the 
configuration u discard all atoms with n > m; from ~ discard all atoms with 
n <m.  Move the end atom (numbered m) in each of the remaining semi- 
infinite configurations to the position u" and fuse them together. 

U @ @ @ @ 

- 4  - 3  - 2  -1  

0 0 0 0 

- 5  - 4  - 3  - 2  

U ~ �9 �9 �9 �9 

- 4  - 3  - 2  - 1  

�9 �9 

0 1 

0 0 
- 1  0 

| 

0 

Q �9 @ @ 

2 3 4 5 

0 0 0 0 
1 2 3 4 

0 0 0 O 
1 2 3 4 

Fig. 11. The semi-infinite configurations to the right and left of the dashed line for u and t~, 
respectively, are discarded and the atoms numbered 0 are shifted and fused together to form 
the configuration u'; see text. 
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The total work W2 for the process just discussed is the sum of (4.17) 
and (4.19) with N =  M =  m, and can be written as 

W'm = ~r; p du= ~ (K',- Kn) + ~ (K'~-K',) (4.21) 
n ~  - - o r  n = r n + l  

where F"  is a path in the phase plane from ~ m  t o  ~ z  via Din, and from ~" 
to (m via tim; note that this takes proper account of the sign in (4.19). See 
Fig, 12, where F"  consists of the two curved segments with arrows 
indicating the direction of integration. By adding straight line segments as 
shown, each of which makes zero contribution to S pdu, one can extend the 
integral to a closed contour and interpret W" as the enclosed area, or 
minus the area for a counterclockwise contour. 

Next suppose there is another equilibrium configuration u" satisfying 
(2.25). The work required to form it by the reconnection process just 
discussed, with the roles of u and ~ interchanged, is 

W'=fr;pdu= ~ (K~'-F.n)+ ~ ( K " - K , )  (4.22) 
n =  cx~ n ~ m + l  

where F,~ is a path in the phase plane connecting ~,, to ~" via /)m, and ~,  
to ~m via Cm. By adding W" to W~,, we obtain the reconnection energy 
(3.19): 

e~(u', u"; u, ~)= Wm= W'm + W" = I_ p du (4.23) 
m 

P 

t m - - I  

f 
t - -  I 

F q -[ qZ 

Fig. 12. The work done during the shifting process of Fig. 11 is shown as a contour integral 
(note arrows) in the phase plane. 
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where Fm, the union of Fm and F 2, is the contour indicated in Fig. 13, and 
Wm is the area it encloses (Win is negative for a counterclockwiSe contour). 

The reconnection energy (3.18) does not depend on the order of its 
first two (or second two) arguments: interchanging u' and u" leaves er 
unchanged. But the reconnection formula (2.25) which determines the 
contour F,~ does not have this symmetry? Thus, it is useful to note the 
following rule for F m does not have this symmetry? Thus, it is useful to 
note the following rule for F,n in (4.23). If a configuration u z to the left of 
the semicolon in er approaches a configuration u r to the right of the 
semicolon as n ~ +0% connect ~t m and ~ in the phase plane with a C 
manifold with an arrow from ~ to ~r m. If, on the contrary, u t and u r 
approach each other as n ~ - o %  use a D manifold with arrow to d~ 
from ~ .  

A third application is to an equilibrium defect u' in a periodic (Q, S) 
locally stable reference state u, and the translation u* of this defect defined 
by (2.21). From (2.23) we see that for every n, ~', and {,* are heteroclinic 
points for the same pair of contracting and expanding manifolds, as 
indicated schematically in Fig. 14, and thus they are equivalent heteroclinic 
points in the notation of Section 4.2. As u' and u* have the same defect 
energy, the net work required to move an atom quasistatically from u', to 
u*, transforming u' into u*, is zero; that is, 

fr p du = 0 (4.24) 

where F consists of a segment of the expanding manifold from ~* to 4',. If 
these two segments intersect at only one point between the ends, as in 

P 

D ~m' 

cc,,: 

12, 

Fig. 13. The reconnection energy (4.23) as a contour integral in the phase plane. 
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Fig. 14. 

P ~,~' ~ C  D ~'~* 

P- U 

The segments of contracting and expanding manifolds connecting two heteroclinic 
points associated with a defect and its translation. 

Fig. 14, the areas of the two loops thereby created must be equal. (In order 
to visualize moving the atom from u'n to u* it may be convenient to 
imagine it split in two parts, one connected to particles to the left of it and 
the other to particles to its right. The two half-particles can be moved 
independently and then reunited at the end.) 

4.5. Single-Defect Energies 

In all the examples considered below, we assume that the reference 
and defect configurations are equilibrium configurations related through a 
network of expanding and contracting manifolds as discussed in Sec- 
tion 4.3. This is plausible provided the reference configuration is locally 
stable, but this last is not a necessary condition. 

The simplest situation is that in which the defect u' has zero phase 
shift: (q, s) = (0, 0) in the notation of Section 2.2. We can then let fi be the 
same as the reference configuration u in the discussion leading up to (4.21); 
from this equation and (3.4) we infer that the defect energy is 

e' -~ e(u')  = W "  = fr~ p du (4.25) 

where F L consists of D m from ~m to r and C,, from r back to era. (See 
the example in Fig. 15, where e' is the area of the cross-hatched region.) 
Although this closed contour depends on m, the area it encloses does not, 
due to the fact that T is area preserving. 



Localized Defects in Classical 1D Mode ls  883 

19 
0.5 

-0.~ 
I I L 

0 0.5 1 u 

Fig. 15. The area of the cross-hatched region enclosed by the expanding and contracting 
manifolds is the energy of a q = s ~ 0 defect in the Q = 1, S = 0 ground state of the Frenkel- 
Kontorova model with K =  2 in (2.9). 

When u' has a nonzero phase shift (q, s), we define ~ by 

~ = u~ _ ~ + s (4.26) 

so that u' satisfies (2.25). Once again, (4.21) applies, with 

/~n = Kn -q (4.27) 

and 
C~ = ~Cm_q (4.28) 

~m = ~S~m--q (4.29) 

Combining (4.21) with (3.7) yields 

e' - Am = W'm = fr;~ p du (4.30) 

with Am defined by (3.8). Unlike the case of zero phase shift, W" and A,,  
can depend on m. However, the average of z~ m is zero, (3.9); thus 

N 

e ' =  ( W )  = lira (2N+ 1) -1 ~ W m (4.31) 
N ~ o : 3  

m =  N 

or, if u is periodic of period Q, 
j + Q - 1  

e ' = O - t  ~ Wm (4.32) 
m=j 
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1.0 

o.c F - -  - ~ - - - q - - - q  ,, 
o.o o15 1.o 1~5 21o s 

1./, 

Fig. 16. Energy of a q = - l ,  s = 0 defect (open circles) in a Q = 31 5' = 1 configuration (solid- 
circles). The area of the cross-hatched region, whose width is Au = l, is three times the energy 

of the defect. 

This is illustrated for a q = - 1 ,  s = 0 defect (open circles) in a Q = 3, 
S =  1 reference configuration (solid circles) in Fig. 16. The cross-hatched 
area is 3e'. Note that while the actual positions of the defect heteroclinic 
points will vary if m is increased by Q, nevertheless 

Wm = Wm+Q (4.33) 

because the map T is area preserving, and thus the right side of (4.32) is, as 
expected, independent ofj .  

Figure 17 shows a second example: a q---2, s =  1 defect in a Q = 5, 
S = 2  reference configuration. The right side of (4.32) is 1/5 the total 
cross-hatched area in Fig. 17a, or in Fig. 17b, where two of the "windows" 
in Fig. 17a have been translated backward using r ~ (which of course 
leaves their areas unchanged). The choice of the defect heteroclinic point at 
which the expanding and contracting manifolds of a given "window" inter- 
sect is arbitrary: one can replace it with an equivalent point (as defined in 
Section 4.2 above) without changing the area. 

4.6. Pinning Energy 

The pinning energy ep of a defect u ~ [-see (3.17)] is equal to the defect 
energy of a saddle point configuration u* [denoted u m in (3.17)] relative to 
u ~ As u* has zero phase shift relative to u ~ we can employ the equivalent 
of (4.25) and write 

= W *  = I t*  p du (4.34) ep 

where F *  is a contour from ~o to r along an expanding manifold D, and 
from ~* back to r176 m along a contracting manifold C. 
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Fig. 17. Energy of a q = 2, s = - 1 defect in a Q = 5, S = 2 reference configuration. (a) Defect 
orbit and contracting and dilating manifolds for one period of the reference configuration. The 
energy of the defect is one-fifth the sum of the areas of the five cross-hatched columns. 
(b) Same as in (a), except that the two columns in the interval 1 ~<u<2 are shifted back to 
the interval 0 ~< u < 1 to make a connected domain. 

As an example, in Fig. 18 the solid circles represent a Q = 1, S =  1 
reference configuration u, the open circles a q = - 1 ,  s = 0 defect u ~ and the 
open squares the corresponding translated defect, (3.14). In the right half of 
the figure the open circle and square are heteroclinic points of the con- 
tracting and expanding manifolds C and D, and on the segments of these 
manifolds connecting these two points there is a third heteroclinic point, a 
solid square. Making the plausible assumption that this. third point 
corresponds to an atom in the appropriate saddle point configuration, 
(4.34) tells us that ep is the area of the cross-hatched loop, or equivalently 
that of the dotted loop-- the  two are equal; see the discussion following 
(4.24). The same construction applied to the loops joining the open circle 
and square in the left of the figure must yield the same answer for ep, since 
T preserves areas. 

It is not obvious that the heteroclinic point for the saddle point con- 
figuration must be at an intersection of the segments of the two manifolds 

822/'53/3-4-22 



886 Tang and Griffiths 

~ 
~ t ~~ 

0.5 

Fig. 18. A q=  -1 ,  s = 0  defect in the Q = S = I  ground state of the Frenkel-Kontorova 
model (2.9) with K=  2. Here ~o and ~1 are two defected orbits related by a translation, and r 
is a "saddle point" defect orbit. The pinning energy is the area of the cross-hatched Qr of the 
dotted region. 

connecting r and ~m' And even if it is, there could be several intersections, 
in contrast to Fig. 18. Formula (4.34) remains valid, but applying it 
requires that ~* be correctly identified! 

The pinning energy of an interface (Section 3.4) between phases cr and 
/~ can be discussed in a similar manner provided (2.29) is satisfied. The 
points ~ (  in the phase plane associated with the interface configuration 
u ~, which satisfies (2.28), fall on the intersection of the manifolds D~, and 
C~m associated with u ~ and u B, respectively. The same is true of the trans- 
lated interface (Section 2.4) and the intermediate saddle point configuration 
u*. The pinning energy is again given by (4.34) with contour F *  equal to 
D~ from 4~m ~ to 4" and C~m from ~* back to 4~ ~, and is thus the area inside a 
closed contour in the phase plane. Once again, it may not be easy to 
identify the heteroclinic point 4" associated with the correct saddle point 
configuration. 

4.7. Interaction Energy of Two Defects 

By combining (3.21) with (4.23), the interaction energy of two defects 
u A and u B in a configuration u AB, relative to a reference configuration u, 
can be expressed as a contour integral 

e AB = er(U AB, U; U A, U B) = fFm p du (4.35) 

as in Fig. 13, which is reproduced in Fig. 19 with the vertices and manifolds 
appropriately labeled. Note that Fm has been constructed by the rule 
which follows (4.23) assuming that the defect u A is to the left of u B in 
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P 

J. ~ D n ~ 

~" 'lZ 

Fig. 19. Con tour  (schematic) whose area is the interaction energy eAs of (4.35). 

AB tends to the terminology of Section 2.3, which is to say that u n u, as 
B n ~  -0% and to u n as n ~  +oo. 

An example is shown in Fig. 20. The reference configuration u has to 
satisfy (2.25); in particular, 

A ~B - - 1 ;  S'-*0 as n ~  oe ~n ---*'~n ---)' Un 
(4.36) 

A B AB u n ~ 0 ;  +1 as n--+ +oQ ~n- - -~Hn 

Portions of the corresponding manifolds in the phase plane are sketched m 
Fig. 20b with symbols for the heteroclinic points corresponding to those 
in Fig. 20a, and Fig. 20c is a simplified version of Fig. 20b with the 
heteroclinic points labeled with Greek letters. 

The various defect energies, in the notation of (3.20), can then be iden- 
tified, as in Sections 4.4 and 4.5, with areas inside contours in Fig. 20c as 
follows: e(u A) corresponds to c~ ~ ~ --,/? --, e; e(u B) corresponds to 3 ~ 0 

~ fl; e(u As) corresponds to c~ ~ ( ~ r / ~  0 ~ 7 --* fl --' ~. Thus, we see that 
the interaction energy eAB defined by (3.20) corresponds to the 
cross-hatched area within ( ~ q ~ 0 ~ fl --* (, which is just the reconnection 
energy (4.35) (see Fig. 19). (Note that in the present example the manifolds 
C A, Cm B, DAm, and DSm are all independent of re.) 

As an application of (4.35), consider the case in which the defects A 
and B are relatively far apart, with A to the left of B, and m labels some 
particle approximately midway between them. It is then plausible that ~m, 
~ ,  (~,  and ~AmB are quite close together in the phase plane, and that the 
segments of CAm and C~ which connect them (Fig. 19), and which cannot 
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"/LA ='U"' 

~=~z' 

(o) 

- ~ 

Fig. 20. (a) Single-defect configurations u a, u B and a two-defect configuration u As relative to 
a Q = 1, S =  0 reference state (not shown). (b )The  corresponding dilating and contracting 
manifolds in the phase plane. (c) A simplified version of (b) with the cross-hatched area equal 
to the defect interaction energy eAB. 

intersect each other, are approximately parallel straight lines, and likewise 
the segments of DAm and D~m . This means that F m is,  to a good 
approximation, a parallelogram, with area 

e AS ~-- '~pAm 6u~ - 6p~ 8Uam (4.37) 

where 6 indicates the deviation of the corresponding quantity from the 
B reference value: 6U~m is U m -  Um, etc. Formula (4.37) is valuable in that it 

expresses the interaction energy of two well-separated defects in terms of 
properties of the individual defects. (4'2~ 

4.9. Step Wid th  in a for Ground States 

The dependence of winding number co on stress a for the ground states 
of a Frenkel-Kontorova model satisfying the "convexity condition" (4.1) 
has been discussed in refs. 17. Typically, one expects a "devil's staircase" in 
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which for every rational ~o = S/Q (Q and S have no common divisors), the 
minimum-enthalpy configuration u is independent of the stress o" in the 
range 

o-'~ ~ r~ ~< G'o (4.38) 

In simple cases a"  and a"  are determined by the values of a at which the 
defect enthalpies e~(r;) and e~(r~) of the retarded and advanced discommen- 
surations (Aubry's terminology), u' and u', become zero. In the notation of 
(3.13) this means that 

Gj+cr~q/Q=O= " a~q /Q ~ ~ t  e ~ o q -  . ~ .  (4.39) 

where we have added a subscript co, and superscripts to distinguish the two 
values of ~ associated with u' and u'. In fact, u' and u" are minimum- 
energy (13) configurations with phase shifts chosen so that 

Ft '=q 'S -s 'Q= 1 
(4.40) 

O ' = q " S - s ' Q =  --i 

This corresponds [(2.20)] to charges 1/S and - 1/S, respectively. Combin- 
ing (4.39) with (4.40) yields the expression 

, , Q( ' , )  (4.41) 

which gives the width of the step (4.38) in terms of the sum of the defect 
energies of u' and u". 

Both e~ and e~ can be expressed as integrals over appropriate paths as 
in Section 4.5. However, one gains additional insight by using the fact that 
if ~/is defined by 

t/n = un _q, + s' (4.42) 

and is hence physically equivalent to u, then u' and u" with appropriate 
numbering satisfy the reconnection formula (2.25). Therefore, e" + e~, is the 
reconnection energy (3.18) given by (4.23): 

( ,  
r! ! tr / 

e ' + e ~ = e r ( u , u  ; u, t / )= Jr,, pdu (4.43) 

where Fig. 13 shows the contour F,,. 
As a first example, consider the case Q = 1, S =  1 sketched in Fig. 21a, 

where u, ~, u', u" are shown using open and solid squares (square contain- 
ing a dot where the two coincide) and open solid circles, respectively, and 



890 Tang and Griffiths 

~.~ 25 3,~ 4,g 5,g 

(0) 
Dl.(. n ~  

� 9  ~ Ol~., 'r 

[] "~ and ~, 
( b ) ;  

Fig. 21. The width of the Q = S =  1 step in the phase diagram is the cross-hatched area 
in (b) corresponding to the points, shown in (a), of the retarded (u') and advanced (u") 
elementary defects relative to the Q = S =  1 ground state u and its translation t~. 

the particle numbers, carrying superscripts to avoid confusion, are 
consistent with (2.25). Figure 21b shows a portion of the phase plane; 
comparison with Fig. 19 shows that e ' + e ~  in (4.43) is the area of the 
cross-hatched region inside the contour. The contour would look rather 
different if m = 2 were used instead of m = 4, but the enclosed area would 
be the same. More generally, ~, can be replaced with any other equivalent 
heteroclinic point (Section 4.2), and the same holds for ~-;. 

A second example is the Q = 5, S = 2, ~o = 2/5 case sketched in Fig. 22, 
wi tha toms numbered consistently with (2.25). Using the same symbols, a 
portion of this diagram is shown on an expanded scale in Fig. 23a, while 

Fig. 22. 

2 4 9 

Advanced (u') and retarded (u') defects relative to a Q = 5, S - 2 ground state u and 
its translate ~. 
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(o) 

(b) 

(o) 

Fig. 23. (a) Part of Fig. 22 shown on an expanded scale, with atoms for the different con- 
figurations placed in the same potential troughs. (b) Connecting the corresponding positions 
in the phase plane with suitable manifolds yields "bubbles," each of which has an area equal 
to the width of the ~o = 2/5 step in the devil's staircase. (c) The same is true of additional 
"bubbles," again formed from contracting and diluting manifolds. 

Fig. 23b indicates corresponding points in the phase plane connected by 
contours Fm (compare Fig. 13), each of which encloses an area equal to 
e" + e~,. Just as in the earlier discussion of single-defect energies (Fig. 17), it 
is possible to use translation to produce a string of five "bubbles" covering 
a unit interval in u, Fig. 23c, whose total area is the step width (4.41). 
Again, the choice of "bubbles" is not unique, since the 4" (or 42,) can be 
replaced with other equivalent heteroclinic points. 
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